SQL Case Study GEMINI VS CHATGPT
GEMINI VS CHATGPT
SQL Challenge-GEMINI VS CHATGPT
TABLES
Models
Capabilities
Benchmarks
SQL SCHEMA
-- Table to store information about different models
CREATE TABLE Models (
ModelID INT PRIMARY KEY,
ModelName VARCHAR(255) NOT NULL
);
-- Table to store information about various capabilities
CREATE TABLE Capabilities (
CapabilityID INT PRIMARY KEY,
CapabilityName VARCHAR(255) NOT NULL
);
-- Table to store benchmark scores for different models and capabilities
CREATE TABLE Benchmarks (
BenchmarkID INT PRIMARY KEY,
ModelID INT,
CapabilityID INT,
BenchmarkName VARCHAR(255) NOT NULL,
ScoreGemini FLOAT,
ScoreGPT4 FLOAT,
Description TEXT,
FOREIGN KEY (ModelID) REFERENCES Models(ModelID),
FOREIGN KEY (CapabilityID) REFERENCES Capabilities(CapabilityID)
);
-- Insert data into the Models table
INSERT INTO Models (ModelID, ModelName) VALUES
(1, 'Gemini Ultra'),
(2, 'GPT-4');
-- Insert data into the Capabilities table
INSERT INTO Capabilities (CapabilityID, CapabilityName) VALUES
(1, 'General'),
(2, 'Reasoning'),
(3, 'Math'),
(4, 'Code'),
(5, 'Image'),
(6, 'Video'),
(7, 'Audio');
-- Insert data into the Benchmarks table
INSERT INTO Benchmarks (BenchmarkID, ModelID, CapabilityID, BenchmarkName, ScoreGemini, ScoreGPT4, Description) VALUES
-- General Capabilities
(1, 1, 1, 'MMLU', 90.00, 86.40, 'Representation of questions in 57 subjects'),
(2, 2, 1, 'MMLU', 86.40, NULL, 'Representation of questions in 57 subjects'),
-- Reasoning Capabilities
(3, 1, 2, 'Big-Bench Hard', 83.60, 83.10, 'Diverse set of challenging tasks requiring multi-step reasoning'),
(4, 2, 2, 'Big-Bench Hard', 83.10, NULL, 'Diverse set of challenging tasks requiring multi-step reasoning'),
(5, 1, 2, 'DROP', 82.4, 80.9, 'Reading comprehension (Fl Score)'),
(6, 2, 2, 'DROP', 80.9, NULL, 'Reading comprehension (Fl Score)'),
(7, 1, 2, 'HellaSwag', 87.80, 95.30, 'Commonsense reasoning for everyday tasks'),
(8, 2, 2, 'HellaSwag', 95.30, NULL, 'Commonsense reasoning for everyday tasks'),
-- Math Capabilities
(9, 1, 3, 'GSM8K', 94.40, 92.00, 'Basic arithmetic manipulations, incl. Grade School math problems'),
(10, 2, 3, 'GSM8K', 92.00, NULL, 'Basic arithmetic manipulations, incl. Grade School math problems'),
(11, 1, 3, 'MATH', 53.20, 52.90, 'Challenging math problems, incl. algebra, geometry, pre-calculus, and others'),
(12, 2, 3, 'MATH', 52.90, NULL, 'Challenging math problems, incl. algebra, geometry, pre-calculus, and others'),
-- Code Generation Capabilities
(13, 1, 4, 'HumanEval', 74.40, 67.00, 'Python code generation'),
(14, 2, 4, 'HumanEval', 67.00, NULL, 'Python code generation'),
(15, 1, 4, 'Natura12Code', 74.90, 73.90, 'Python code generation. New held out dataset HumanEval-like, not leaked on the web'),
(16, 2, 4, 'Natura12Code', 73.90, NULL, 'Python code generation'),
-- Image Capabilities
(17, 1, 5, 'MIMMU', 59.40, 56.80, 'Multi-discipline college-level reasoning problems'),
(18, 2, 5, 'VQAv2', 77.80, 77.20, 'Natural image understanding'),
(19, 1, 5, 'TextVQA', 82.30, 78.00, 'OCR on natural images'),
(20, 2, 5, 'DocVQA', 90.90, 88.40, 'Document understanding'),
(21, 1, 5, 'Infographic VQA', 80.30, 75.10, 'Infographic understanding'),
(22, 2, 5, 'MathVista', 53.00, 49.90, 'Mathematical reasoning in visual contexts'),
-- Video Capabilities
(23, 1, 6, 'VATEX', 62.7, 56, 'English video captioning (CIDEr)'),
(24, 2, 6, 'Perception Test MCQA', 54.70, 46.30, 'Video question answering'),
-- Audio Capabilities
(25, 1, 7, 'CoV0ST 2', 40.1, 29.1, 'Automatic speech translation (BLEU score)'),
(26, 2, 7, 'FLEURS', 7.60, 17.60, 'Automatic speech recognition (word error rate)')
QUESTIONS
create database Gemini
-- Table to store information about different models
CREATE TABLE Models (
ModelID INT PRIMARY KEY,
ModelName VARCHAR(255) NOT NULL
);
-- Table to store information about various capabilities
CREATE TABLE Capabilities (
CapabilityID INT PRIMARY KEY,
CapabilityName VARCHAR(255) NOT NULL
);
-- Table to store benchmark scores for different models and capabilities
CREATE TABLE Benchmarks (
BenchmarkID INT PRIMARY KEY,
ModelID INT,
CapabilityID INT,
BenchmarkName VARCHAR(255) NOT NULL,
ScoreGemini FLOAT,
ScoreGPT4 FLOAT,
Description TEXT,
FOREIGN KEY (ModelID) REFERENCES Models(ModelID),
FOREIGN KEY (CapabilityID) REFERENCES Capabilities(CapabilityID)
);
-- Insert data into the Models table
INSERT INTO Models (ModelID, ModelName) VALUES
(1, 'Gemini Ultra'),
(2, 'GPT-4');
-- Insert data into the Capabilities table
INSERT INTO Capabilities (CapabilityID, CapabilityName) VALUES
(1, 'General'),
(2, 'Reasoning'),
(3, 'Math'),
(4, 'Code'),
(5, 'Image'),
(6, 'Video'),
(7, 'Audio');
-- Insert data into the Benchmarks table
INSERT INTO Benchmarks (BenchmarkID, ModelID, CapabilityID, BenchmarkName, ScoreGemini, ScoreGPT4, Description) VALUES
-- General Capabilities
(1, 1, 1, 'MMLU', 90.00, 86.40, 'Representation of questions in 57 subjects'),
(2, 2, 1, 'MMLU', 86.40, NULL, 'Representation of questions in 57 subjects'),
-- Reasoning Capabilities
(3, 1, 2, 'Big-Bench Hard', 83.60, 83.10, 'Diverse set of challenging tasks requiring multi-step reasoning'),
(4, 2, 2, 'Big-Bench Hard', 83.10, NULL, 'Diverse set of challenging tasks requiring multi-step reasoning'),
(5, 1, 2, 'DROP', 82.4, 80.9, 'Reading comprehension (Fl Score)'),
(6, 2, 2, 'DROP', 80.9, NULL, 'Reading comprehension (Fl Score)'),
(7, 1, 2, 'HellaSwag', 87.80, 95.30, 'Commonsense reasoning for everyday tasks'),
(8, 2, 2, 'HellaSwag', 95.30, NULL, 'Commonsense reasoning for everyday tasks'),
-- Math Capabilities
(9, 1, 3, 'GSM8K', 94.40, 92.00, 'Basic arithmetic manipulations, incl. Grade School math problems'),
(10, 2, 3, 'GSM8K', 92.00, NULL, 'Basic arithmetic manipulations, incl. Grade School math problems'),
(11, 1, 3, 'MATH', 53.20, 52.90, 'Challenging math problems, incl. algebra, geometry, pre-calculus, and others'),
(12, 2, 3, 'MATH', 52.90, NULL, 'Challenging math problems, incl. algebra, geometry, pre-calculus, and others'),
-- Code Generation Capabilities
(13, 1, 4, 'HumanEval', 74.40, 67.00, 'Python code generation'),
(14, 2, 4, 'HumanEval', 67.00, NULL, 'Python code generation'),
(15, 1, 4, 'Natura12Code', 74.90, 73.90, 'Python code generation. New held out dataset HumanEval-like, not leaked on the web'),
(16, 2, 4, 'Natura12Code', 73.90, NULL, 'Python code generation'),
-- Image Capabilities
(17, 1, 5, 'MIMMU', 59.40, 56.80, 'Multi-discipline college-level reasoning problems'),
(18, 2, 5, 'VQAv2', 77.80, 77.20, 'Natural image understanding'),
(19, 1, 5, 'TextVQA', 82.30, 78.00, 'OCR on natural images'),
(20, 2, 5, 'DocVQA', 90.90, 88.40, 'Document understanding'),
(21, 1, 5, 'Infographic VQA', 80.30, 75.10, 'Infographic understanding'),
(22, 2, 5, 'MathVista', 53.00, 49.90, 'Mathematical reasoning in visual contexts'),
-- Video Capabilities
(23, 1, 6, 'VATEX', 62.7, 56, 'English video captioning (CIDEr)'),
(24, 2, 6, 'Perception Test MCQA', 54.70, 46.30, 'Video question answering'),
-- Audio Capabilities
(25, 1, 7, 'CoV0ST 2', 40.1, 29.1, 'Automatic speech translation (BLEU score)'),
(26, 2, 7, 'FLEURS', 7.60, 17.60, 'Automatic speech recognition (word error rate)')
---Gemini Vs Chatgpt database.
select * from benchmarks
select * from capabilities
select * from models
QUESTIONS
1)What are the average scores for each capability on both the Gemini Ultra and GPT-4 models?
select c.capabilityname,
round(avg(b.scoregemini),2) as Avgscoregemini,
round(avg(b.scoregpt4),2) as Avgscoregpt4
from capabilities c join benchmarks b
on c.capabilityid =b.capabilityid
group by capabilityname
order by Avgscoregemini,Avgscoregpt4 desc ;
2)Which benchmarks does Gemini Ultra outperform GPT-4 in terms of scores?
select benchmarkname from benchmarks
where scoregemini > scoregpt4
order by benchmarkname asc;
3)What are the highest scores achieved by Gemini Ultra and GPT-4 for each benchmark in the Image capability?
select benchmarkname,
max(scoregemini) as Geminihighscore,
max(scoregpt4) as Gpt4highscore
from benchmarks
where capabilityid =5
group by benchmarkname
order by Geminihighscore,Gpt4highscore desc;
4)Calculate the percentage improvement of Gemini Ultra over GPT-4 for each benchmark?
select benchmarkname,
round(((scoregemini-scoregpt4)/(scoregpt4) * 100),2) as Percentimp
from benchmarks
where scoregpt4 is not null
order by percentimp desc;
5)Retrieve the benchmarks where both models scored above the average for their respective models?
select benchmarkname,scoregemini,scoregpt4
from benchmarks
where scoregemini> (select avg(scoregemini) from benchmarks)
and scoregpt4 > (select avg(scoregpt4) from benchmarks)
order by benchmarkname,scoregemini,scoregpt4 desc;
6)Which benchmarks show that Gemini Ultra is expected to outperform GPT-4 based on the next score?
select benchmarkname from benchmarks
where scoregemini is not null and scoregpt4 is null;
7)Classify benchmarks into performance categories based on score ranges?
select benchmarkname,
case
when scoregemini >=90 then 'high'
when scoregemini >=70 then 'medium'
else 'low'
end as PerfcatergGemini,
case
when scoregpt4 >90 then 'high'
when scoregpt4 >70 then 'medium'
else 'low'
end as PerfcatergGpt4
from benchmarks
order by PerfcatergGemini,PerfcatergGpt4 desc;
8) Retrieve the rankings for each capability based on Gemini Ultra scores?
with capabilityrankings as
(select c.capabilityname,b.benchmarkname,b.scoregemini,
rank() over (partition by c.capabilityid
order by b.scoregemini desc) as Geminirank
from benchmarks b
join capabilities c
on b.capabilityid = c.capabilityid
where b.modelid=1)
select capabilityname,benchmarkname,scoregemini,geminirank
from capabilityrankings
order by geminirank;
9)Convert the Capability and Benchmark names to uppercase?
select
upper(c.capabilityname)as capabilityname,
upper(b.benchmarkname) as benchmarkname
from capabilities as c join
benchmarks as b
on c.capabilityid = b.capabilityid
10) Can you provide the benchmarks along with their descriptions in a concatenated format?
select benchmarkname,concat (benchmarkname,'_',description) as Benchmarkwithdesc
from benchmarks;
Follow @Thanaselvi C for more updates :
CREATE A LINKEDIN POST. ENSURE THAT YOU TAG @DIGITS N DATA AND @NITISH KUMAR TO LET ME KNOW HOW YOU GET ON!
Comments
Post a Comment